Skip to content


Analytica Chimica Acta |
Published: 8 September 2022

Titration without separation, e.g. quantification of a target species in living cells, is a challenge of analytical chemistry. We perform the selective detection of a target using the kinetics involved in a photochemical process and develop a correlation method that we illustrate by the titration of a fluorescent photoswitcher and the target of a photoswitching sensor. Correlating an input time series and a well-chosen weighting function associated with a variable characteristic time yields a spectrum of characteristic times. The upper integration limit of the correlation output can be chosen to match the argument of an extremum of the spectrum with a characteristic time of the input time series in order to quantify the target. A similar procedure is followed to optimize the signal-to-noise ratio. Selectivity and signal-to-noise ratio associated with 15 weighting functions are theoretically predicted. The results are applied to the titration of the reversibly photoswitchable fluorescent protein Dronpa-2 and the titration of calcium using a reversibly photoswitchable fluorescent sensor. The performance of the correlation method is favorably compared to the one of other dynamic contrast protocols.

Plants growing in nature often experience fluctuating irradiance. However, in the laboratory, the dynamics of photosynthesis are usually explored by instantaneously exposing dark-adapted plants to constant light and examining the dark-to-light transition, which is a poor approximation of natural phenomena. With the aim creating a better approximation, we exposed leaves of pea (Pisum sativum) to oscillating light and measured changes in the functioning of PSI and PSII, and of the proton motive force at the thylakoid membrane. We found that the dynamics depended on the oscillation period, revealing information about the underlying regulatory networks. As demonstrated for a selected oscillation period of 60 s, the regulation tries to keep the reaction centers of PSI and PSII open. We present an evaluation of the data obtained, and discuss the involvement of particular processes in the regulation of photosynthesis. The forced oscillations provided an information-rich fingerprint of complex regulatory networks. We expect future progress in understanding these networks from experiments involving chemical interventions and plant mutants, and by using mathematical modeling and systems identification and control tools.

ChemPhysChem |
Published: 17 August 2022

We introduce HIGHLIGHT as a simple and general strategy to selectively image a reversibly photoactivatable fluorescent label associated with a given kinetics. The label is submitted to sine-wave illumination of large amplitude, which generates oscillations of its concentration and fluorescence at higher harmonic frequencies. For singularizing a label, HIGHLIGHT uses specific frequencies and mean light intensities associated with resonances of the amplitudes of concentration and fluorescence oscillations at harmonic frequencies. Several non-redundant resonant observables are simultaneously retrieved from a single experiment with phase-sensitive detection. HIGHLIGHT is used for selective imaging of four spectrally similar fluorescent proteins that had not been discriminated so far. Moreover, labels out of targeted locations can be discarded in an inhomogeneous spatial profile of illumination. HIGHLIGHT opens roads for simplified optical setups at reduced cost and easier maintenance.